
A Survey of Genetic AlgorithmsM. TomassiniCentro Svizzero di Calcolo Scienti�co, MannoandLaboratoire de Syst�emes LogiquesEcole Polytechnique F�ed�erale de LausanneSwitzerlandTo be published in Volume III of Annual Reviewsof Computational Physics, World Scienti�cAbstractEvolutionary algorithms are an important emergent computing method-ology. They have aroused intense interest in the past few years becauseof their versatility in solving di�cult problems in the optimization andmachine learning �elds. Many applications to several di�erent areashave been reported and the �eld is still in expansion. We will �rstbrie
y review the history and the methodological basis of evolutionaryalgorithms, followed by a simple example of their functioning. Parallelevolutionary algorithms will then be introduced, showing their goodmatch to today's parallel and distributed computers. We will thenlook at a couple of applications and, �nally, references and commentsto bibliographic and other information on evolutionary methods willbe given to allow readers to broaden their knowledge in the �eld.1 IntroductionEvolutionary Algorithms (EAs) are a hot topic these days. Although theyare probably a fashionable theme, there is also much solid work being doneand the steady adoption of evolutionary computing methodologies not onlyin research but also for industrial and commercial problem-solving activitiesis a sure sign that the approach is sound and competitive. EAs are here tostay then and we will try to �nd out how they work and why they o�er goodsolutions for di�cult problems. 1



Evolutionary Algorithms are search and optimization procedures that�nd their origin and inspiration in the biological world. The Darwiniantheory of evolution, with the survival of the �ttest in a changing environmentseems to be generally accepted, at least on grounds of accumulated evidenceso far on the earth. EAs try to abstract and mimic some of the traits of theongoing struggle for evolution in order to do a better job in problems thatrequire adaptation, search and optimization. However, it would be wrongto blindly identify simulated evolution with actual biological evolution. Itis much better to consider ideas from the theory of evolution as being aninspiration for �nding good arti�cial adaptive processes. After all, evolutiontook millions of years, is an ongoing process and operates in an exceedinglycomplex system of interactions. Evolution-inspired methodologies can andshould only capture major distinctive features of natural evolution. Sincewe are in fact dealing with man-made systems, we should also feel free ofusing whatever device works well for a given class of problems, even if it hasno direct biological counterpart, provided that some theoretical basis can befound for its use. Furthermore, arti�cial evolution runs at electronic speedsand is amenable to mathematical and statistical analysis.The �rst part of this chapter will be devoted to a survey of the origins,motivations and developments in the �eld of simulated evolution. Evolu-tionary Algorithms is a general term e�ectively encompassing a number ofrelated but not identical methodologies that all exploit ideas from natu-ral evolution and selection. Genetic Algorithms, Evolution Strategies andEvolutionary Programming are the prominent approaches with Genetic Pro-gramming rapidly coming into play. Reasons of space will prevent us fromdescribing all the models and their relationships. In the second part wewill therefore concentrate on the widely used Genetic Algorithms (GAs),introducing them through an easy example. To put the whole subject intoperspective, pointers will be given to reference work in the other evolution-ary methods and to the interrelations between them. The term EvolutionaryAlgorithm will still be used in this review in general settings or whenever itdoes not lend itself to misunderstanding. The term Genetic Algorithms willbe preferred for the more technical discussions.Evolutionary computing o�ers many possibilities for parallel and dis-



tributed execution because many steps are independent. In fact, if the nat-ural metaphor is to be followed, evolutionary algorithms are parallel in the�rst place, since evolution takes place with individuals acting simultaneouslyin spatially extended domains. A sequential execution setting thus appearsas an unnecessary constraint. Section ?? gives an extensive discussion ofparallelism in EAs.The number of published papers on evolutionary computation has dra-matically increased over the last few years. Evolutionary algorithms havebeen applied to many problems in diverse research and application areassuch as hard function and combinatorial optimization, neural nets evolution,planning and scheduling, industrial design, management and economics, ma-chine learning and pattern recognition. It is not my aim here to give a fullaccount of current applications of EAs. A few representative applicationswill be brie
y described but I shall provide a number of pointers to therelevant literature.Because of the explosive growth of the �eld, there is a risk for the new-comer to get lost in the multi-faceted world of evolutionary computing. Forthis reason a commented bibliography is given. Although far from exhaus-tive, this list should prove useful for beginners. On the other hand, groupsworking in evolutionary computing are very enthusiastic and willing to sharetheir results and ideas. This has given rise to mailing lists, public domainsoftware and discussion forums. To make the life of the interested readereasier, I will provide information about how to access this sources.Let us now turn to the fascinating history of evolutionary computing.2 The Genesis of Genetic AlgorithmsWork on what is nowadays called evolutionary computing started in thesixties both in the United States and in Europe. John Holland and his asso-ciates at the University of Michigan were interested in arti�cial complex sys-tems that would be able to adapt under changing environmental conditions.The idea was that, in order for a population of individuals to collectivelyadapt in some environment, it should behave like a natural system wheresurvival is promoted by the elimination of useless or harmful traits and



by rewarding useful behaviour. Holland's insight was his abstraction intothe genetic algorithm of the fundamental biological mechanisms permittingsystem adaptation into a form that can be expressed mathematically andsimulated on a computer for a wide range of problems.The link between an actual search and optimization problem and theGA is the individual. Each individual represents a feasible solution in someproblem space through a suitable mapping. The mapping from problemspace to individuals and the reverse mapping have historically been donethrough strings of binary digits. Introduced by Holland, bit strings aregeneral and they allow some theoretical results about GAs to be obtained.However, bit encoding is not always the best choice and we will see in ??that other representations are possible and have been used.A GA is an iterative procedure which maintains a constant populationsize and works as follows. An initial population of a few tens to a fewhundreds individuals is generated at random or heuristically. During eachiteration step, called a generation, the individuals in the current populationare evaluated and given a �tness value. To form a new population, indi-viduals are selected with a probability proportional to their relative �tness.This ensures that the expected number of times an individual is chosen isapproximately proportional to its relative performance in the population, sothat good individuals have more chances of being reproduced. This selectionprocedure alone cannot generate any new point in the search space. GAstraditionally use two genetic operators: crossover and mutation for generat-ing new individuals i.e, new search points. Crossover is the most importantrecombination operator: it takes two individuals called parents and producestwo new individuals called the o�spring by swapping parts of the parents.In its simplest form the operator works by exchanging substrings after arandomly selected crossover point. Through crossover the search is biasedtowards promising regions of the search space. The second operator, muta-tion, is essentially background noise that is introduced to prevent prematureconvergence to local optima by randomly sampling new points in the searchspace. To bit strings, mutation is applied by 
ipping bits at random in astring with a certain probability called the mutation rate.GAs are stochastic iterative algorithms without converge guarantee. Ter-



mination may be triggered by reaching a maximum number of generationsor by �nding an acceptable solution.The following general schema summarizes a standard genetic algorithm:produce an initial population of individualswhile termination condition not met doevaluate the fitness of all individualsselect fitter individuals for reproductionproduce new individualsgenerate a new population by inserting some new goodindividuals and by discarding some old bad individualsmutate some individualsend whileIn the next section a tutorial example of a simple problem solved with aplain GA will be presented and discussed in detail. A classic source for anin-depth discussion of GAs, including the historical aspects, is Goldberg'sbook [1].Let us now move for a moment to the other side of the Atlantic. WhileHolland was inventing GAs in the States, similar concepts were makingtheir appearance in Germany. Ingo Rechenberg and H.-P. Schwefel wishedto imitate the principles of natural evolution to achieve robust algorithmsfor parameter optimization problems. This approach goes under the nameof Evolution Strategies (ESs). In its original form evolution strategies workwith continuosly changing parameters represented as 
oating point num-bers, rely on mutation as the only genetic operator and the population justhad two members, the parent and the o�spring. Later a multimemberedpopulation was used. Here is an outline of a typical implementation for anumerical optimization problem, where a coordinate vector correspondingto the optimum of a function is sought:



� An initial population of parent vectors xi; i = 1; :::; N is selected atrandom from a uniform distribution.� An o�spring vector is obtained from each parent by adding a normallydistributed random number to each vector component.� The selection operator determines which of the vectors are to be keptfor the next generation by choosing the n vectors with the best �tnessamong parents and o�spring.� The process of generating new vectors and evaluating the whole pop-ulation continues until a satisfactory solution is found.The above description is a simpli�ed one. A more detailed discussion withreferences to the original work is to be found in Michalewicz's book [2] andin [10].Evolutionary Programming is somewhat similar in spirit to evolutionstrategies in that it also uses mutation as the main genetic operator. Thisavenue of investigation originated in the United States in the sixties and rep-resents problem solutions by a population of �nite-state machines. O�springmachines are created by randomly mutating in various ways each parent ma-chine. Parent and o�spring are assigned a payo� and the best machines areretained to form the new population while the worst individuals die in orderto maintain a constant size population.The distinctive trait of evolution strategies and evolutionary program-ming with respect to genetic algorithms is that in the latter the simulatedevolution takes place at the genotypic level, that is at the level of codingsequences, whereas the former put the emphasis on phenotipic adaptationi.e., the behavioural expression of a genotype in a speci�c environment.With time, Evolution Strategies and Genetic Algorithms have convergedsomewhat with ESs introducing a form of recombination of individuals andGAs adopting the idea of 
oating-point coding of chromosomes for numericalwork and the self-adaptation of mutation rates characteristic of ESs.A recent account of evolutionary programming along with a comparisonwith genetic algorithms and evolution strategies can be found in [3].



3 A Simple ExampleSummarizing what has been said in the previous section, we see that theessential ingredients of a genetic algorithm are the following:� a constant size population of individuals, usually randomly initialized.� each individual represents a point in the search space for a given prob-lem through a suitable coding.� a �tness value is assigned to each individual in the population.� individuals are ranked and selected according to their �tness in sucha way that more �t individuals are more likely to reproduce.� genetic operators such as crossover and mutation are applied to pairs ofindividuals or to single individuals in order to produce new individualsi.e., new feasible solutions to a problem.In order to explain how GAs work, I will present a simple example. GAshave been largely used in optimization and, although they are not limited tothat �eld, their workings are probably better understood in an optimizationsetting. The problem is not a mathematically hard one, it could be solvedby hand or with a number of other established methods and its value ispurely illustrative.The non-constrained function minimization problem can be cast as fol-lows. Given a function f(x) and a set D 2 Rn, �nd x� such that:f(x�) = minff(x) j 8x 2 Dgwhere x = (x1; x2; : : : ; xn)T . For maximization, simply replace f with �f .Let us consider the following function (see Fig.1):f(x) = � j x sin(qj x j) jThe problem is to �nd x� in the interval [0; 512] which minimizes f .Since f(x) is symmetric, studying it in the positive portion of the x axis willsu�ce.



0

100

200

300

400

-400 -200 0 200 400

Figure 1: Graph of f(x) in [�512; 512].Let us examine in turn the components of the genetic algorithm forsolving the given problem.The initial population will be formed by 50 randomly chosen trial pointsin the interval [0; 512]. Therefore, one individual is a value of the real variablex. A binary string will be used to represent the values of x. The length ofthe string will be a function of the required precision, the longer the stringthe better the precision. For example, if each point x is represented in 10 bitsthen 1024 di�erent values are available for covering the interval [0; 512] with1024 points, which gives a granularity of 0:5 for x i.e., the genetic algorithmwill be able to sample points no less than 0:5 apart from each other.The strings (0000000000) and (1111111111) will represent respectivelythe lower and upper bounds of the search interval. Any other 10-bit stringwill be mapped to an interior point. For mapping the binary string to a realnumber the string is �rst converted to a decimal number and then to thecorresponding real x. Finally note that we used 10-bit strings for the sake



of illustration: in real applications �ner granularities and therefore longerstrings are often needed.The �tness of each sample point x is simply the value of the function atthat point. Since we want to minimize f , the lower the value of f(x), the�tter is x. 1How are strings selected for reproduction as a function of their �tness?There are several possibilities but here we will explain �tness-proportionateselection, one of the simplest. Alternatives to this well-known method willbe brie
y presented later. After having found the �tness of each individualfi in a given generation, one �rst forms the sum:S = popsizeXi=1 fi;which is the total population �tness. Then a probability is assigned toeach string as follows: pi = fiSFinally, a cumulative probability is obtained for each individual by addingup the �tnesses of the preceding population members:ci = iXk=1 pk; i = 1; 2; : : : ; popsizeA random number r uniformly distributed in [0; 1] is drawn popsizetimes and each time the i-th string is selected such that ci�1 < r � ci.When r < c1, the �rst string is selected. This process can be visual-ized as the spinning of a biased roulette wheel divided into popsize slots,each with a size proportional to the individual's �tness. For the sake ofillustration, suppose that there are only four strings with the followingpi values: p1 = 0:30; p2 = 0:20; p3 = 0:40; p4 = 0:10. Thus we have:c1 = 0:30; c2 = 0:50; c3 = 0:90; c4 = 1:0. Now, imagine that a random1We added a positive constant to our function de�nition to make it � 0 in the giveninterval. This is required by some individual selection methods but has no in
uence onthe general argument.



number r = 0:25 is drawn. Since r < c1, individual 1 will be selected. If rwere 0.96 then individual 4 would be selected (c3 < 0:96 < c4).With roulette-wheel selection �ttest members have proportionally morechances of being reproduced and strings can be selected more than once.For this method to work, the �tness values should be positive numbers sincewe are using probability measures.Once the new population has been produced, strings are paired at ran-dom and recombined through crossover. Here we will explain one-pointcrossover. Assume that the following two strings have been selected forrecombination: 0010011010 and 1110010001a position is selected at random between 1 and the length of the stringminus one, each position being equally likely. Suppose that position 6 hasbeen chosen (marked by the vertical bar):001001 j 1010111001 j 0001Then, after swapping all bits from position 6 to the end of the string oneobtains two new strings called the o�spring:001001 j 0001111001 j 1010These two new individuals will enter the new population in place of theirparents. Crossover is applied with a certain frequency called crossover ratepc, which means that any given individual takes part in the recombinationif a uniformly distributed random variable in the interval [0; 1] has a value� pc. A common empirical value for pc is 0.6.After crossover, mutation can be applied to population members witha frequency pm around 0.01. The usual interpretation of bit mutation rate



is the following: for each string in the population and for each bit withinthe string generate a random number r between 0 and 1, if r � pm 
ip thebit. These values of pc and pm have been arrived at by repeated experimen-tation and trial and error and have nothing sacred in themselves. In moresophisticated GAs crossover and especially mutation rates do not need tostay constant during a run.What is the role of these genetic operators? There is an abundant liter-ature about di�erent variants of crossover and mutation and their relativeimportance. In the classical GA view crossover is the fundamental operatorand mutation only plays an ancillary role. In this view, the importance ofcrossover comes from the fact that it is believed to combine bene�cial traitsof both parents, thereby increasing the likelihood of generating �tter indi-viduals, whereas mutation can only a�ect one individual at a time. This hasto do with the apparent usefulness of sexual reproduction in nature and itsgeneral di�usion, in spite of the fact that it requires �nding a mate and canmake individuals more vulnerable to predators during the search. In a moresymbolical vein, the usefulness of crossover seems to be related to the combi-nation of so-called building blocks i.e. better than average substrings comingfrom di�erent individuals (see the next section). Trough crossover we thustry combinations of strings that have already been proved to be relativelygood. Mutation is still needed because even if selection and crossover to-gether search new solutions, they tend to cause rapid convergence and thereis the danger of loosing potentially useful genetic material. We shouldn't for-get that we are in fact restricted to relatively small sample sizes in practice,whence the possibility of sampling errors. In order to reintroduce diver-sity and to avoid search stagnation, bit mutations are allowed as describedabove. However, mutation frequencies have to be low, otherwise the searchtends to degenerate into a random walk.The relative importance of mutation and crossover is still controversialand some evolutionary techniques such as evolution strategies and evolu-tionary programming have selection and more sophisticated versions of mu-tation, and not crossover, as their principal evolutionary operators (see forinstance refs.[10] and [11]).



Equipped with these notions, let us now come back to our function min-imization problem and run the GA. 2As measures of the quality of the search we use here the average pop-ulation �tness during a generation and the best individual found. Sincegeneration 0 is randomly initialized, it is to be expected that neither theaverage nor the best �tnesses are very good. In fact, in a particular run wefound the following evolution:Generation Best Average0 1.0430 268.703 1.0430 78.619 0.00179 32.7118 0.00179 14.3226 0.00179 5.8336 0.00179 2.7250 0.00179 1.7769 0.00179 0.15From the table, one sees that, starting from a random population, there isa fairly rapid improvement in the �rst generations. The minimum is alreadyfound at generation 9. However, the population average �tness continuesto improve until the population becomes little di�erentiated and the �tnesslevels-o�. This is a quite general behaviour of all evolutionary algorithms.In this simple problem there is practically no risk for the algorithm to gettrapped in a local minimum. In harder problems, a compromise must bereached between exploitation of good regions, i.e. local improvement, andfurther exploration of the problem space, to avoid missing better extremaas far as possible.At the end of the run (generation 70), the �ve best solutions found wherethose shown in the following table (where the Generation column says atwhich generation a given solution has been found).2All the runs described in this section have been done with the GENESIS program[12]. The tables shown have been edited to improve readability.



x f(x) Generation421.5 0.04832 8422.0 0.15785 6421.0 0.00179 9420.5 0.01824 8420.0 0.09763 12All points are clustered around the absolute minimum (x = 421:0; f(x) =0:001794) which has thus been found within the given resolution limits. Onelast remark is in order. Genetic algorithms are stochastic, thus their perfor-mance varies from run to run (unless the same random number generatorwith the same seed is used). Because of this, the average performance overseveral runs is a more useful indicator of their behaviour than a single run.This was an easy problem to solve for GAs as well as for any othermethod. However, GAs have been shown to be e�ective for hard mathemat-ical optimization of multimodal functions with tens of variables [9].4 Why GAs work: Schemata and Building BlocksIn this section we will look in a little greater detail into the standard geneticalgorithm workings in order to see why GAs constitute an e�ective searchprocedure. Remaining in the realm of binary string representation of indi-viduals, let us consider the symbol alphabet f0; 1;#g where f#g is a specialwild card symbol that matches both 0 and 1. A schema is a string with �xedand variable symbols. For example, the schema [01#1#] is a template thatmatches the following strings: [01010], [01011], [01110] and [01111]. Thesymbol # is never actually manipulated by the GA: it is only a notationaldevice that makes it easier to talk about families of strings.Holland's idea was that every evaluated string actually gives partial in-formation about the �tness of the set of possibles schematas of which thestring is a member. This is a manifestation of what he called implicit par-allelism, not to be confused with the kind of parallelism to be discussed insection ??. Then he analyzed the in
uence of reproduction, crossover and



mutation on the expected number of schemata when going from one genera-tion to the next. The details of the analysis are relatively simple but cannotbe reported here. A good discussion can be found in ref. [1]. We will onlyoutline the main results and their signi�cance.Under �tness-proportionate replication, the number m of individuals inthe population belonging to a particular schemata H at time t+1 is relatedto the same number at time t by:m(H; t+ 1) = m(H; t)(fH(t)=(f(t))where fH(t) is the average �tness value of the strings representing schemaH, while f(t) is the average �tness value over all strings in the population.If one assumes that a particular schema remains above the average by a�xed amount cf(t) for a number t of generations then the solution of theabove recurrence is the following exponential growth equation:m(H; t) = m(H; 0)(1 + c)tWhere m(H; 0) stands for the number of schemata H in the population attime 0, c is a positive constant and t � 0. The signi�cance of this resultis that �tness-proportionate reproduction allocates exponentially increasingnumber of trials to above-average schemata.Now crossover and mutation enter into the picture. The e�ect of crossover,which breaks strings apart, is to diminish the exponential increase by a quan-tity that is proportional to the crossover rate pc and depends on the de�ninglength � of a schema and on the string length l:pc �(H)l � 1The de�ning length � of a given schema is the distance between the �rstand the last �xed string positions. For example, for the schema [01#1#]� = 4 � 1 = 3 and for [##1#1010] � = 8 � 3 = 5. Intuitively, one seesthat short de�ning length schemata will be less disrupted by single-pointcrossover. The result is that above-average schemata with short de�ninglengths will still be sampled at an exponentially increasing rate. This above-average, short de�ning length schemata are the so-called building blocks andplay an important role in the theory.



The e�ects of mutation are straightforward to describe. If the bit mu-tation probability is pm, then the probability of survival of a single bit is1�pm. Since single bit mutations are independent, the total survival proba-bility is thus (1�pm)l, where l is the string length. But since we are talkingabout schemata, only the �xed (i.e. non wild card) positions matter. Thisnumber is called the order o(H) of a schema H and equals l minus thenumber of don't care symbols. For example, the two schemata above haveo = 3 and o = 5 respectively. Then the probability of surviving a mutationfor a schema H is (1� pm)o(H) which, for pm � 1 can be approximated by1� o(H)pm.Putting together the e�ects of reproduction, crossover and mutation, weare led to Holland's so-called schema theorem:m(H; t+ 1) � m(H; t)fH(t)f(t) [1� pc �(H)l � 1 � o(H)pm]This result essentially says that the number of short, low-order, above-average schemata grows exponentially in subsequent generations of a geneticalgorithm.Although the schema theorem is an important result, it was obtainedunder somewhat idealized conditions. Both the individual representationand the genetic operators can be di�erent from those used by Holland. Thebuilding-block hypothesis has been found reliable in many cases but it alsodepends on representation and genetic operators and it is easy to �nd orto construct problems for which it is not veri�ed. These so-called deceptiveproblems are being studied since a few years in order to �nd out what arethe inherent limitations of genetic algorithms and which representations andoperators, if any, can make them more easily tractable. In spite of the abovelimitations, the theory sketched in this section represents a �rm footing forthe workings of standard genetic algorithms. Refs. [1], [13] and [14] go intomuch more detail.5 More Advanced Topics and ExtensionsIn this section we hint at several extensions and variations that somewhatcomplicate the rather neat image of a GA given earlier. This will bring us



closer to the way GAs are actually used by practitioners and will also partlyexplain their generality and 
exibility. We will look �rst at coding issues,including non-binary and non-�xed-length representations. Then alterna-tives to �tness-proportionate selection will be introduced in section ??. Thefollowing section ?? describes some di�erent forms of the genetic operators,especially crossover. Finally, we introduce hybrid algorithms, in which prob-lem domain knowledge is brought into the GA in various ways making themless general but often much more e�cient. Although we will touch uponthe more important issues in the following sections, we cannot do justice tothe amount of research that has been done or is being done. However, theinterested reader will �nd references to more detailed presentations.5.1 RepresentationBinary coding has been the usual individual representation in genetic algo-rithms for a long time. Binary strings are su�ciently general but they arenot always the more natural or the more adequate representation. Consider,for instance, numerical parameter optimization problems such as the exam-ple in section ??. There, the precision was a function of the number of bitsin the bit string representing an individual point. To attain a su�cient pre-cision requires many bits and the problem is all the more serious if one wantsto tackle multidimensional problems. Dealing with very long bit strings istime-consuming and the search spaces are enormous. Therefore, wouldn't itbe better to consider the more natural 
oating point representation in thesecases? This has indeed been done with very good results ([2], [9]). Obvi-ously, switching to 
oating point representation requires careful rethinkingof the genetic operators, which are going to be di�erent from those used forbit strings.Representation issues also appear when dealing with combinatorial opti-mization problems i.e., those discrete variable problems in which a particularsolution out of a �nite set of feasible solutions is sought [15]. For example,the shortest path problem on a directed graph is an easy combinatorial prob-lem, meaning that it takes time proportional to a polynomial function of the



instance size to solve in the worst case. However there are many importantcombinatorial optimization problems that are intrinsically hard i.e., theirtime complexity is exponential. Typical representatives of this class are theTraveling Salesman Problem (TSP) and the Hamilton Circuit problem. InTSP we are to �nd the shortest tour that visits each node of a completeweighted graph G exactly once. In the Hamilton circuit problem the ques-tion is: given a graph G, is there a circuit in G visiting all nodes exactlyonce?There are no known e�cient algorithms for hard combinatorial prob-lems like the TSP and Hamilton circuit. Furthermore, these problems areparadigmatic versions of very important management problems in the �eldsof sequencing, routing and scheduling. Therefore, it is important to be ableto quickly �nd good solutions to large instances of these problems, even ifthe solution is not globally optimal. Approximation and heuristic algorithmsof various kinds, including genetic algorithms, have been found e�ective.When using GAs for this kind of problems, representation issues surfaceagain. For graphs, a natural representation of an individual is an integervector, where the integers represent some ordering of the nodes, instead ofa binary string. If we take again TSP as an example, solutions may de-velop by crossover and mutation that are not legal tours, not only witha binary representation, but also when using integers. These new illegalindividuals need to be repaired or penalized in some way. Another possibil-ity consists in de�ning representations and genetic operators in such a waythat only legal solution can be produced. At any rate, the new representa-tion and operators will bear little resemblance to the classical binary stringbased ones. Furthermore, theoretical results obtained for bit strings are notimmediately transferable to other representations. On the other hand, anabundance of accumulated circumstantial and empirical evidence, tend tosuggest that specially developed genetic representations and operators maylead to e�cient evolutionary solutions to di�cult problems.Ref. [2] contains a discussion of genetic representation issues for combi-natorial and numerical problems including constrained ones, together withreferences to original work.



A completely di�erent representation is suggested by a new way of usingevolutionary algorithms called genetic programming, fully described in ref.[17]. Genetic programming is a major variation of genetic algorithms inwhich the evolving individuals are themselves computer programs insteadof �xed length strings from a rather limited alphabet of symbols. Programsare represented as trees with ordered branches in which the internal nodesare functions and the leaves are the so-called terminals of the problem. Thesearch space in genetic programming is the space of all computer programscomposed of functions and terminals appropriate to the problem domain.Suitable functions and terminals are determined for the problem at handand an initial random population of trees (programs) is constructed. Fromthere on the population evolves in the usual GA way with �tness being asso-ciated to the actual execution of the program (individual) and with geneticoperators adapted to the tree representation. The crossover operation startsby selecting a random crossover point in each parent tree and then exchangesthe sub-trees, giving rise to two o�spring trees. Mutation is implementedby randomly removing a subtree at a selected point and replacing it with arandomly generated subtree. There are also provisions for preventing treesfrom becoming too deep, for simplifying trees and for compressing trees thatperform a useful functions into a single reusable module.Genetic programming has been shown to be able to automatically breedprograms able to solve, or approximately solve, a variety of relatively simpleproblems from many �elds [17]. It remains to be seen whether the method-ology can be extended to automatically evolve problems for more di�culttasks and for general programming.5.2 SelectionIn section ?? �tness-proportionate selection was introduced. This selectionmethod is not without problems however. One problem is that, after awhile, since better individuals get more copies in successive generations,the di�erences in �tness between individuals become small which rendersselection ine�ective. In this case the selection pressure need to be augmentedto allow the better individuals to reproduce more often than they would



under the normal �tness evaluation.Another problem is the possible existence of a super individual in thepopulation i.e., an individual with an unusually high �tness. With �tness-proportionate reproduction this individual will get many copies in successivegenerations and rapidly come to dominate the population, thus causing pre-mature convergence to a possibly local optimum.It is possible to partially avoid these e�ects by suitably scaling the eval-uation function, which amounts to the use of a modi�ed �tness measure.Several scaling methods have been suggested and are discussed for examplein [1].Another approach to mitigate the above e�ects is to use selection meth-ods that do not allocate trials proportionally to �tness. Two such methodsare ranking selection and tournament selection.In ranking selection, the individuals in the population are ordered by�tness and copies assigned in such a way that the best individual receives apredetermined multiple of the number of copies than the worst one. Rankselection reduces the dominating e�ects of super individuals without needfor scaling and, at the same time, it exacerbates the di�erence between close�tness values, thus increasing the selection pressure in stagnant populations.Ranking selection methods have been used with some success, on the otherhand, they ignore the information about relative �tness of di�erent individ-uals and violate the schema theorem.In tournament selection a number n of individuals is selected at randomwith uniform probability and the best one among them �nds its way into thenew population. The winner can also be chosen probabilistically. The pro-cess is then repeated popsize times. The selection pressure is proportional tothe tournament size n. A widely used value of n is two. Tournament selec-tion has the advantage that it need not be global so that local tournamentscan be held simultaneously in a spatially organized population (see section??).A quite satisfactory treatment of selection methods together with manyreferences is to be found in ref. [2].



5.3 Genetic OperatorsThe one-point crossover and mutation used up to now are the original ver-sions of the genetic operators. Simple and inspired by biology they havenevertheless some drawbacks in practice. Consequently, many variants havebeen proposed. Let us start with crossover. One natural extension of theone-point crossover is the multi-point crossover. For instance, in two-pointscrossover there are two cut points (marked by the vertical bars) and sub-strings are swapped between the two points:001 j 101 j 1010111 j 001 j 0001001 j 001 j 1010111 j 101 j 0001According to some researchers, multi-point crossover is more apt to com-bine certain good features present in strings.Another widely used crossover type is uniform crossover. Given twoparent strings, for each bit in the �rst o�spring a bit in the correspondingposition is copied randomly with some probability from one of the parents.The second o�spring gets the corresponding bit from the remaining parent.For example, given the two parents above and a probability of 1=2, supposethat the following series of random choices is made (where 1 stands for the�rst parent and 2 for the second):1221211212then we would obtain the following o�spring:01110110111010010000



Uniform crossover violates the customary form of the schema theorem andis less likely to preserve good building blocks. However, for some problems,it has given good results. For a good discussion of crossover-related issuesand further references, see chapter 4 of ref. [2].Mutation has been less studied than crossover in the GA literature.Worth of note are adaptive mutation schemes, partly borrowed from evo-lution strategies, in which either the rate or the form of mutation or both,vary during a GA run. For instance mutation is sometimes de�ned in sucha way that the search space is explored uniformly at �rst and more locallytowards the end, in order to do a kind of local improvement of candidatesolutions. Again, further information on sophisticated mutation techniquescan be found in ref. [2].5.4 Hybrid AlgorithmsGenetic algorithms are a robust, general-purpose search procedure. Theycan quickly explore huge search spaces and �nd those regions that haveabove-average �tness. However, when it comes to actually �nding globaloptima, they sometimes run into di�culties because they lack focus in thesearch. This in turn raises the question as to what extent GAs can be com-petitive for real-world applications when compared to more specialized algo-rithms and heuristics. The answer may lie in hybrid genetic algorithms. Hy-brid genetic algorithms work by incorporating a fast and e�cient problem-speci�c search procedure. They also tend to use encodings and geneticoperators that are tailored to the problem to be solved. By doing so, verye�cient algorithms can be produced, as demonstrated by some recent work([18],[19]). Hybrid GAs are even less amenable to theoretical analysis thanstandard genetic algorithms but they are very interesting in practice andtheir use is increasing. A readable description of the motivations behindhybrid GAs appears in ref. [16].6 Parallel Evolutionary AlgorithmsParallel computing is becoming an important part of scienti�c computing ingeneral since it holds the promise of improving performance by just adding



processors, memory and an interconnection and putting them to work to-gether on a given problem. By sharing the workload, it is hoped that anN -processor system will do the job nearly N times faster than a uniproces-sor system, thereby allowing researchers to treat larger and more interestingproblem instances. In reality, things are not so simple since several over-head factors contribute to signi�cantly lower the theoretical performanceimprovement expectations. In any event, there exist many important prob-lems that are su�ciently regular in their space and time dimensions to besuitable for parallel computing. Fortunately, evolutionary algorithms belongto this class of `easy' parallel problems.The original formulation of GAs by Holland and others in the seventieswas a sequential one. This approach made it easier to reason about math-ematical properties of the algorithms and was justi�ed at the time by thelack of adequate software and hardware. This is no longer the case todayand parallel evolutionary algorithms are becoming more common.There are two main reasons for parallelizing an evolutionary algorithm:one is to achieve time savings by distributing the computational e�ort andthe second is to bene�t from a parallel setting from the algorithmic point ofview, in analogy with the natural parallel evolution of spatially distributedpopulations.We will start by describing simple though very useful parallel evolu-tionary algorithms whereby interesting performance improvements can beobtained without changing the general sequential evolutionary algorithmschema. In many real-world problems, the calculation of the individual's�tness is by far the most time consuming step of the algorithm. In thiscase an obvious approach consists in evaluating each individual �tness si-multaneously on a di�erent processor. If there are more individuals thanprocessors, which is often the case, then the individuals to evaluate are di-vided as evenly as possible among the available processors. It is assumedthat �tness evaluation takes about the same time for any individual. Theother parts of the algorithms are as before and remain centralized. Thefollowing is an informal description of the algorithm:produce an initial population of individuals



while termination condition not met dodo in parallelevaluate the fitness of all individualsend parallel doselect fitter individuals for reproductionproduce new individualsgenerate a new population by inserting some new goodindividuals and by discarding some old bad individualsmutate some individualsend whileAnother method consists in running simultaneously and independentlyN copies of the algorithm on theN available processors. The best of the mul-tiple independent runs is then the required result. Since EAs are stochastic,several runs are in general needed anyway to draw statistically signi�cantconclusions. The copies must di�er in the generation of the initial popula-tion and possibly in the setting of some parameters such as the crossover andmutation rate. Each processor computes for a given number of generations.In practice no communication is needed between processors except whenit is desired to stop the computation when one processor has satisfactorilysolved the problem before the allowed maximum number of generations.We now turn to more genuinely parallel approaches for evolutionary al-gorithms. All these �nd their inspiration in the observation that naturalpopulations tend to possess a spatial structure. As a result, so-called demesmake their appearance. Demes are semi-independent groups of individualsor subpopulations having only a loose coupling to other neighbouring demes.This coupling takes the form of the slow migration or di�usion of some in-dividuals from one deme to another. A number of models based on spatialstructure have been proposed. The two most important categories are theisland and the grid models.



The island model [4,5] features geographically separated subpopulationsof relatively large size. Subpopulations may exchange information by al-lowing some individuals to migrate from one subpopulation to another witha given frequency and according to various patterns. The main reason be-hind this model is to periodically reinject diversity into otherwise convergingsubpopulations. When the migration takes place between nearest neighboursubpopulations the model is called stepping stone. Within each subpop-ulation a standard sequential evolutionary algorithm is executed betweenmigration phases. The following is a high-level algorithmic description ofthe process:initialize P subpopulations of size N eachgeneration number := 1while termination condition not met dofor each subpopulation do in parallelevaluate and select individuals by fitnessif generation number mod frequency = 0 thensend K<N best individuals toa neighbouring subpopulationreceive K individuals from aneighbouring populationreplace K individuals inthe subpopulationend ifproduce new individualsmutate individualsend parallel dogeneration number := generation number + 1



end whileHere frequency is the number of generations before an exchange takesplace. Several individual replacement policies have been described in theliterature. One of the most common is for the migrating K individuals todisplace the K worst individuals in the subpopulation. It is to be noted thatthe subpopulation size, the frequency of exchange, the number of individualsto migrate and the migration topology are all new parameters of the algo-rithm that have to be set in some way. At present there is no rigorous wayfor choosing them. However, several empirical investigations have arrivedat rather similar conclusions [4,7].In the grid or �ne-grained model [6] individuals are placed on a largetoroidal two-dimensional grid, one individual per grid location. Fitness eval-uation is done simultaneoulsy for all individuals and selection, reproductionand mating take place locally within a small neighborhood. With time,semi-isolated niches of genetically homogeneous individuals emerge acrossthe grid as a result of slow individual di�usion. This phenomenon is calledisolation by distance and is due to the fact that the probability of interactionof two individuals is a fast-decaying function of their distance. The followingis a pseudo-code description of a grid evolutionary algorithm.

for each grid point do in parallelgenerate a random individualend parallel dowhile termination condition not met do



for each grid point k do in parallelevaluate individual in kselect a neighbouring individual qproduce offspring from k and qassign one of the offspring to kmutate k with probability pmend parallel doend whileIn the preceding description the neighborhood is generally formed by thefour or eight nearest neighbors of a given grid point. The selection of anindividual in the neighborhood for mating with the central individual can bedone in various ways. Tournament selection is one of the more common andeasier. Likewise, the replacement of the original individual can be done inseveral ways. For example, it can be replaced by the best among itself andthe o�spring or one of the o�spring can replace it at random. The model canbe made more dynamical by adding provisions for longer range individualmovement through random walks, instead of having individuals interactingexclusively with their nearest neighbours [8].Though both island and grid models can be implemented on serial ma-chinery and constitute in this case useful variants of the standard globallycommunicating population genetic algorithm, they are ideally suited for par-allel computers. From an implementation point of view, coarse-grained is-land models, where the ratio of computation to communication is high, aremore adapted to multiprocessor systems and even for clusters of workstations[4,5,7]. Grid models are well adapted for massively parallel SIMD (Single In-struction Multiple Data) machines such as the Connection Machine CM-200[8], since the necessary local communication operations, though frequent, arevery e�ciently implemented in hardware. Further, it should be noted thathybrid models are also possible. For example, one might consider an island



model in which each island is structured as a grid of individuals interactinglocally.In general, it has been found that parallel evolutionary algorithms, apartfrom being signi�cantly faster, help in relieving the premature convergenceproblem and are e�ective for multimodal optimization [4,5]. This is dueto the larger total populations and to the relative isolation of the spatialregions where solutions start to co-evolve. Both of these factors help topreserve diversity while at the same time promoting local search. As inthe sequential case, the e�ectiveness of the search can be improved at theexpense of generality by permitting hill-climbing, i.e. local improvementaround promising search points [9].Until now only the space dimension entered into the picture. If wetake time into account as well, then parallel evolutionary algorithms canbe loosely synchronous, synchronous or asynchronous. Island models are ingeneral loosely synchronous. They use an SPMD (Single Program MultipleData) coarse-grain parallelism in which communication phases synchronizeprocesses. This is not necessary and experiments have been done with asyn-chronous EAs in which subpopulations exchange individuals only when someinternally measured level of convergence has been attained. This avoidsconstraining all coevolving populations to do the swaps at the same timeirrespective of subpopulation evolution. This approach could well be moree�ective but requires the handling of a list of exchange requests and needsa common measure of population diversity. Fine-grained parallel EAs arefully synchronous when they are implemented on SIMD machines and arean example of data-parallelism.Triggered by the recent availability of parallel computers and worksta-tion clusters, parallel and distributed EAs have been used with success forsome time. They are simple to implement and o�er advantages over thestraight sequential algorithm. However, parallelism introduces new degreesof freedom that have to be dealt with by the implementer, their theoreticalanalysis is more di�cult and very little is known about their properties.I conclude this section with a remark concerning the possibility of ob-



taining `superlinear speedup' i.e., getting more than n-fold acceleration withn processors, when using parallel evolutionary algorithms. Although strictlyspeaking superlinear speedup does not arise in deterministic situations, itbecomes possible when an element of chance in choice ordering is present.For example, this has been shown to be the case in tree and graph searchingproblems where, depending on the position of the solution and the way thesearch space is subdivided, parallel search may be more than n-fold e�ec-tive. The problem lies in determining what are the input distributions thatmake the phenomenon possible. Superlinear speedup has been reported inrecent work for parallel evolutionary algorithms and the same e�ect has beenobserved for stochastic algorithms of the Monte Carlo type. Many people,including the author, have observed that almost always a lower number of�tness evaluations is needed to reach the same quality of solution in the par-allel than in the sequential case. This may loosely be attributed to a kindof cooperative e�ect in the search that is lost when working with globallycommunicating populations.7 Applications of Evolutionary AlgorithmsLiterally hundreds of papers have been published in the last few years on EAsapplications that range from industrial optimization and design ([20],[21]),neural network design ([22]), management and �nance ([23]), arti�cial life([24]), communication networks ([25]) and many, many others. A completebibliography is given in ref.[26]. Clearly, it would be impossible to givehere a faithful account of current applications of EAs. To give the reader a
avour of this blossoming activity, I will brie
y describe two studies: one oncellular automata, which should appeal to the computational physicist andthe second, to management, more typical of applied GA research.7.1 Evolving Cellular AutomataArti�cial evolutionary processes can be helpful for discovering emergent in-formation processing capabilities in decentralized, spatially-extended mod-els. One of the simplest model of this kind is a one-dimensional cellularautomata (CA) [27].



In ref. [28] Crutch�eld and coworkers described a simple computationaltask for a �nite, one-dimensional two-state CA which is to decide whether ornot a given initial CA con�guration of zeroes and ones contains more thanhalf 1s. The task is trivial for systems with a centralized control but it isdi�cult for a CA, in which only �nite radius information transmission cantake place at any given moment. The seven neighbours cellular automatarule of Gacs, Kurdymov and Levin rule (GKL) performs this task correctlyfor a substantial part of many randomly generated initial con�gurations.The authors carried out a set of experiments in which GAs are used toevolve CA rules for the above described computational task. One-dimensionalCA rules can be easily encoded as binary strings by just successively record-ing in the string the next states (binary) corresponding to all the neighbor-hood states combinations in a given rule listed in a �xed order. For example,the following rule is one of the possible 256 rules with two states and threeneighbours and it is represented by the string (01011010).111 110 101 100 011 010 001 0000 1 0 1 1 0 1 0With seven neighbours and two possible states, one has rules of length27 = 128 and the number of possible rules is huge: 2128. Starting with apopulation of random CA rules, the authors have used as a �tness measurefor a rule the number of correct classi�cations after a given number of CAsteps over 100 initial random con�gurations chosen with uniform probability.As usual, the strings (rules) that performed better were selected to surviveand randomly paired to produce new rules by crossover, the o�spring beingsubject to a small mutation rate.Computational capabilities and general patterns of rule strategies werefound to automatically emerge from the simulated evolutionary process al-though in no case the GA-evolved pattern classi�cation strategies were su-perior to the GKL rule. However, some evolved rules had remarkably goodperformance, close to that of the GKL rule which, for a system of this com-plexity, is a good result. Further �ndings belonging to the theory of discretenon-linear dynamical systems are discussed in [28] and related papers.



7.2 Portfolio Selection with Distributed GAsThe central problem in portfolio selection is to �nd a number of assets andtheir weights in such a way that a certain measure of risk is minimized for anygiven level of expected return on investment. Classically, risk is measuredas the standard deviation or the variance of the probability distributionof future returns. In this framework, quadratic programming is used forsolving the portfolio selection problem. More recent approaches are basedon semivariance and downside risk, which roughly means that investors onlyperceive risk below the mean of the distribution of returns. For these newmodels deterministic algorithms such as quadratic programming are not veryuseful. There are tens or even hundreds of assets in a given portfolio andthe risk-return surface is no longer convex, as when variance is used, butit becomes a very rugged, non-convex, highly multimodal landscape. Whendeterministic algorithms for optimization fall short, stochastic and heuristicmethods may become attractive. Genetic algorithms where thus used tosolve the portfolio allocation problem in ref. [29].Choosing an optimal portfolio can be viewed as a multi-objective op-timization problem in that an investor wants to minimize risk while max-imising expected return. As the level of risk increases, the expected re-turn attached to optimal portfolios draws a convex non-decreasing curve,which is called e�cient frontier, which is the set of Pareto-optimal, i.e. non-dominated, portfolios. In other words, on the e�cient frontier, a largerexpected return corresponds to a greater risk. This can be expressed as atwo-objective optimization problem in the parameters region w:minw fRisk(w)gmaxw fReturn(w)gsubject to Xwi�0wi = 1These two objectives can be parametrized to yield a parametric objectiveminw f�Risk(w)� (1� �)Return(w)g;



where parameter � is a trade-o� coe�cient ranging between 0 and 1. When� = 0 the investor disregards risk and only seeks to maximize expectedreturn; when � = 1 the risk alone is minimized, whatever the expected re-turn. Since there is no general way to tell which particular trade o� betweenrisk and return is to be considered the best, optimizing a portfolio means�nding a whole range of optimal portfolios for all the possible values of thetrade o� coe�cient; the investors will thus be able to choose the one theybelieve appropriate for their requirements. A natural way to achieve thatin an evolutionary setting is to have several distinct populations evolve fora number of trade-o� coe�cient values. The greater this number, the �nerthe resolution with which the investor will be able to explore the e�cientfrontier. Because it is likely that slight variations in the trade-o� coe�cientdo not signi�cantly worsen a good solution, a natural way to sustain the evo-lutionary process is to allow migration or cross-breeding between individualsbelonging to populations corresponding to values of the trade-o� coe�cientthat are close together. This suggests a distributed implementation wherepopulations are linearly arranged according to their relevant trade-o� value.Distributed GAs of the kind described in section ?? can be used tospeed up the search on a cluster of workstations. The population topologyused was a two-way string of processors in which exchange of individualsonly takes place between nearest neighbours i.e., those with similar trade-o�coe�cients. Very good results have been found in [29] for portfolios with upto 150 assets. A comparison with a previous sequential solution showed thatthe parallel version was not only obviously faster, it also converged on theaverage towards better solutions in all cases over many di�erent portfolios.Evolutionary Computation ResourcesThere are several ftp and WWW sites worldwide from which useful informa-tion and public domain code can be obtained. Here we will limit ourselves tothe most important ones: from there it will be easy for the interested personto follow the links to other relevant sites. The GA site `par excellence' isThe Genetic Algorithms Archive. This can be reached on the web at thefollowing URL:



http://www.aic.nrl.navy.mil/galistIt can also be accessed by anonymous ftp at the following address:ftp.aic.nrl.navy.mil in /pub/galistThis well-organized site contains a wealth of information on GA-related ac-tivities, conferences, courses and workshops, technical reports, source codeand much more. It is possible to suscribe to a low-noise GA list (onlydigests are sent about once a week) by sending a message to: GA-list-request@aic.nrl.navy.mil.A very complete frequently asked question (FAQ) document can be ob-tained either from the www site above or by anonymous ftp from:lumpi.informatik.uni-dortmund.de in /pub/EA/docs/hhgtec-3.1.ps.gzThis FAQ, called The Hitch-Hiker's Guide to Evolutionary Computation:A List of Frequentely Asked Questions has been prepared by J. Heitk�otterand is extremely useful. It also contains pointers and advice on techniquesother than GAs, such as evolution strategies and genetic programming.Guide to the BibliographyBooksThe classical text on Genetic Algorithms is Goldberg's book [1]. This bookis eminently readable and even a bit verbose at times. It contains verygood chapters on GA theory, the history of evolutionary computing andthe application of evolutionary techniques in the machine learning �eld, anAI subject that has not been touched in the present article. On the otherhand, the book is in my opinion too biased towards genetic algorithms tothe detriment of other methods that are only brie
y cited and it is a bitout of date, given the spectacular advances in the �eld since 1988. I lookforward for a second edition of this excellent text.



Michalewicz's book [2] is an up-to-date and rather complete treatmentof evolutionary algorithms. It gives clear explanations of the functioning ofgenetic algorithms but it also spends a sizeable number of pages on evolu-tion strategies, new genetic operators and recent variants of EAs. Like Davis[17], it makes a case for adapting the genetic representation and operatorsto the given problem and for hybrid approaches. The chapters on combina-torial and constrained optimization are especially valuable since the originalsources are scattered in many articles and conference papers. There is alsoa chapter on evolutionary machine learning and a good list of references.Overall, a very good book on the subject.Handbook of Genetic Algorithms by Davis [17] is an eminently pragmaticbook. The reader is taken by the hand to a whole trip about GAs in lessthan 100 pages. This part is very well written and easy to understand. Thischapter is highly advisable to anybody wishing to rapidly grasp the subjectmatter. The only drawbacks are the lack of theory and a strong enphasison GAs. But, after all, the book `is' about genetic algorithms. The restof the book consists in several multiauthor chapters, each one presenting areal-life application. These chapters are a bit uneven but overall they givean illuminating view of current industrial applications of GAs.None of the above books describes parallel EAs in su�cient detail.For genetic programming, just touched upon here, the standard refer-ence is Koza's book [17]. Another useful reference is [30].Evolution strategies and evolutionary programming are less well repre-sented, both in the present article for technical reasons, and in the generalliterature. Apart from ref. [2], ES are well described in [10].A recent book by D. Fogel [31] is the only one available on evolutionaryprogramming, apart from the historical Arti�cial Intelligence through Simu-lated Evolution by L.J. Fogel, A.J. Owens and M.J. Walsh, published in 1964.The book is readable and more biology-oriented than other works. The un-delying theme is that intelligence in the biological sense is an evolutionary



property and it makes a case for phenotypic adaptation as opposed to thegenotypic evolution typical of the GA.There is a good chapter on theory andsome simple control and game applications are discussed at length.Conferences and JournalsThe most important journal on evolutionary algorithms is EvolutionaryComputation, published quarterly by MIT Press. Some related journals areAdaptive Behaviour and Arti�cial Life, both published quarterly by MITPress and BioSystems, by Elsevier. Many articles on applications are pub-lished in other journals, Alander's bibliography [26] being the more completesource to date.Many conferences have sections on evolutionary computing. The mostimportant dedicated conferences are the following:� ICGA: International Conference on Genetic Algorithms. It takes placein the U.S. on odd-numbered years. Proceedings published by MorganKaufmann.� PPNS: Parallel Problem Solving from Nature. International conferenceheld in Europe in even-numbered years. Proceedings published bySpringer-Verlag in the Lecture Notes in Computer Science series.� ICANNGA: International Conference on Arti�cial Neural Nets andGenetic Algorithms. Takes place in Europe every two years. Proceed-ings published by Springer-Verlag.� Alife: International Conference on Arti�cial Life. Held in the U.S.Many articles of interest for arti�cial evolution. Proceedings by Addison-Wesley (1987-1992) and MIT Press (1994).AcknowledgementI thank my colleagues at the Logic Systems Laboratory and at the Universityof Geneva for the stimulating atmosphere that made this work possible. Also



thanks to the Editor of this series for his patience and advise and to mycolleague A. Tettamanzi for critically reading the manuscript.References1. G. Goldberg, Genetic Algorithms in Search, Optimization and MachineLearning, Addison Wesley, Reading, MA, 1989.2. Z. Michalewicz, Genetic Algorithms + Data Structures = EvolutionPrograms, Springer-Verlag, Second Edition, Berlin, 1994.3. D.B. Fogel, An Introduction to Simulated Evolutionary Optimization,IEEE Trans. on Neural Networks, 5, 3, 1994.4. J.P. Cohoon, S.U. Hegde, W.N. Martin and D. Richards: PunctuatedEquilibria: a Parallel genetic Algorithm, in Proc. of the Second Int.Conf. on Genetic Algorithms, J.J Grefenstette (Editor), LawrenceErlbaum Associates, 148, 1987.5. R. Tanese: Parallel genetic Algorithm for a Hypercube, in Proc. of theSecond Int. Conf. on Genetic Algorithms, J.J Grefenstette (Editor),Lawrence Erlbaum Associates, 177, 1987.6. B. Manderick and P. Spiessens: Fine-Grained Parallel Genetic Algo-rithms, in Proc. of the Third Int. Conf. on Genetic Algorithms, J. D.Scha�er (Editor), Morgan Kau�man, 428, 1989.7. T. Starkweather, D. Whitley and K. Mathias: Optimization Using Dis-tributed Genetic Algorithms, in Parallel Problem Solving from Nature,Lecture Notes in Computer Science Vol. 496, H.-P. Schwefel and R.M�anner (Editors), Springer-Verlag, 176, 1991.8. M. Tomassini, The Parallel Genetic Cellular Automata: Application toGlobal Function Optimization, Proceedings of the International Con-ference on Arti�cial Neural Networks and Genetic Algorithms, Springer-Verlag, Wien, 385, 1993.



9. H. M�uhlenbein, M. Schomish and J. Born, The Parallel Genetic Algo-rithm as Function Optimizer, Parallel Comput. 17, 619, 1991.10. T. B�ack, F. Ho�meister and H.P. Schwefel, A Survey of EvolutionStrategies, Proceedings of the Fourth International Conference on Ge-netic Algorithms, Morgan Kaufmann, Los Altos, CA, 1991.11. D. B. Fogel and J.W. Atmar, Comparing genetic Operators with Gaus-sian Mutations in Simulated Evolutionary Processes using Linear Sys-tems, Biol. Cybern. 63, 111, 1990.12 J. J. Grefenstette, A Users's Guide to GENESIS Version 5.0, 1990.13. G. J. E. Rawlins (Editor), Foundations of Genetic Algorithms, MorganKaufmann Publishers, San Mateo, CA, 1991.14. L. D. Whitley (Editor), Foundations of Genetic Algorithms 2, MorganKaufmann Publishers, San Mateo, CA, 1993.15 C. H. Papadimitriu and K. Steiglitz, Combinatorial Optimization: Algo-rithms and Complexity, Prentice-Hall, Englewood Cli�s, New Jersey,1982.16. L. Davis, Handbook of Genetic Algorithms, Van Nostrand, New York,1991.17. J. Koza, Genetic Programming, MIT Press, Cambridge, MA, 1992.18. C. Cotta, J.F. Aldana, A.J. Nebro and J.M. Troya, Hybridizing GeneticAlgorithms with Branch and Bound Techniques for the Resolution ofthe TSP, in Proceedings of the Int. Conf. on Arti�cial Neural Netsand Genetic Algorithms, D.W. Pearson, N.C. Steele and R.F. Albrecht(Editors), Springer-Verlag, 277, 1995.19. T. Kido, H. Kitano and M. Nakanishi, A Hybrid Search for GeneticAlgorithms: Combining Genetic Algorithms, Tabu Search and Simu-lated Annealing, in Proceedings of the �fth Int. Conf. on GeneticAlgorithms, S. Forrest (Editor), Morgan Kaufmann, CA, 641, 1993.



20. M.F. Bramlette and E..E. Bouchard, Genetic Algorithms in ParametricDesign of Aircraft, in ref. 16, 109, 1991.21. D. Powell and M.M. Skolnik, Using Genetic Algorithms in Engineer-ing Design Optimization with Non-Linear Constraints, in Proceedingsof the �fth Int. Conf. on Genetic Algorithms, S. Forrest (Editor),Morgan Kaufmann, CA, 424, 1993.22. S.G. Roberts and M. Turega, Evolving Neural Networks: an Evaluationof Encoding Techniques, in Proceedings of the Int. Conf. on Arti�cialNeural Nets and Genetic Algorithms, D.W. Pearson, N.C. Steele andR.F. Albrecht (Editors), Springer-Verlag, 96, 1995.23. O. Pictet, M. Dacorogna, B. Chopard, M. Oussaidene, R. Schirru andM. Tomassini, Using Genetic Algorithms for Robust Optimization inFinancial Applications, to appear, Neural network World, 1995.24. R.A. Brooks and P. Maes (Editors), Arti�cial Life IV, MIT Press,Cambridge, MA, 1994.25. L. Davis, D. Orvosh, JL. Cox and Y. Qiu, A Genetic Algorithm forSurvivable Network Design, in Proceedings of the �fth Int. Conf. onGenetic Algorithms, S. Forrest (Editor), Morgan Kaufmann, CA, 408,1993.26. J.T. Alander, An Indexed Bibliography of Genetic Algorithms: Years1957-1993, Technical Report N.94-1, University of Vaasa, Finland,1994. The bibliography can also be obtained by anonymous ftp as sev-eral compressed postscript �les from: ftp.uwasa.� in directory: cs/report94-1.27. S. Wolfram Cellular Automata and Complexity, Addison-Wesley, Read-ing, MA, 1994.28. R. Das, M. Mitchell and J.P. Crutch�eld, A Genetic Algorithm Dis-covers Particle-Based Computation in Cellular Automata, in ParallelProblem Solving from Nature, Lecture Notes in Computer Science 866,



Y. Davidor, H.-P. Schwefel and R. M. M�anner (Editors), Springer-Verlag, 344, 1994.29. A. Loraschi, A. Tettamanzi, M. Tomassini and P. Verda, DistributedGenetic Algorithms with an Application to Portfolio Selection Prob-lems, in Proceedings of the Int. Conf. on Arti�cial Neural Nets andGenetic Algorithms, D.W. Pearson, N.C. Steele and R.F. Albrecht(Editors), Springer-Verlag, 384, 1995.30. K.E. Kinnear (Editor), Advances in Genetic Programming, MIT Press,Cambridge, MA, 1994.31. D.B. Fogel, Evolutionary Computation, IEEE Press, New York, 1995.


